Support Vector Machines

Support Vector Machines

* Early ideas developed in 1960s and 1970s by Vladimir
Vapnik and Alexey Chervonenkis in USSR

* Major developments in 1990s by Vapnik and many
others (Corinna Cortes, Bernhard Scholkopf, ...)

 Originally developed for binary classification tasks

* Elegant theory BRIl
* Clear notion of model ‘capacity” |
* Generalization bounds \

* Works very well in practice

3
Image credit: Yann LeCun

Using Support Vector Machines

sklearn.svm.SVC

class sklearn.svm. SVC (C=1.0, kernel="rbf’, degree=3, gamma="auto_deprecated’, coef0=0.0,
shrinking=True, probability=False, tol=0.001, cache _size=200, class_weight=None,
verbose=False, max_iter=-1, decision_function_shape="ovr’, random_state=None) [source]

Parameters:

C | float, optional (default=1.0)

Lots of terminology and concepts specific to SVMs.

Penalty parameter C of the error term. .
To use SVMs effectively should know what they mean!

kernel|: string, optional (default="rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’ *“sigmoid’, ‘precomputed’ or a callable. ? ?

degree|: int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gammal: float, optional (default="auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.

coef0|: float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

Using Support Vector Machines

sklearn.svm.SVC

1.4.6. Kernel functions

Reading documentation isn’t enough to
understand what these things mean, or

The kernel function can be any of the following: why SVMs are expressed this way!

?

linear: (x, x').

? « polynomial: (y{z, ') + 7)%. d is specified by keyword degree , 7 by coefo .

rbf: exp(—y||z — z'||?). v is specified by keyword gamma , must be greater than 0.

sigmoid (tanh(y(x, ') + r)), where r is specified by coefe .

1.4.6.1. Custom Kernels

You can define your own kernels by either giving the kernel as a python function or by precomputing
the|Gram matrix.

?

Using Support Vector Machines

sklearn.svm.SVC

None of this makes sense without
1.4.7.1. SVC | building it up piece-by-piece...

?
Given training vectors z; € R? i=1,..., n, in two classes, and a vector (NS {1, —1}", SVC solves the following|primaljproblem:

.1 7 =
min w W CZ;C" ...s0 that is what we will do!
subject to y; (w’ ¢(z;) +b) > 1 — ¢, -
A R . 4

o 0N

tts[dualfis
?P7? 1 £ N £ N £ N
min EaTQa —ela g‘[| g‘[| w ﬂw
(87 L 4 4

subject to yTa = 0

? OSO!ZSC,’I,———].,,H ?

where e is the vector of all ones JC' > 0 is the upper bound| @) is an n by n positive semidefinite matrix, Qij = yiy]-K(:ci, zcj)

where K (z;,z;) = ¢(xi)T ¢(z;) is the kernel. Here training vectors ard implicitly mapped|into a higher (maybe infinite)
?

dimensional space by the function ¢.

Linear Discriminant Functions

e If data is linearly separable, can choose from among
many possible separating hyperplanes

* Is any choice of w better than
the rest? In what sense?

* Unregularized logistic regression
does not care; all equally good

* Regularized logistic regression
cares, but does biasing each w);
toward zero give a hyperplane that
satisfies useful definition of “best”?

Choosing a hyperplane

e Suppose we choose a hyperplane that passes

close to the training data P
ey mistake! ..
e BUT training data is just a small i
subsample of all possible data.

* New class samples likely to be
‘near’ training data of that class

* We're setting ourselves up to
make mistakes on test data!

Notice that this concern hinges on an assumption that the data distribution
is somehow “smooth,” where the presence of a sample of class C indicates

a higher probability of observing class C “nearby” in feature space.

Maximum margin principle

* ldea: seek the separating hyperplane that has
maximum margin from the training samples

more likely to generalize less likely to generalize

margin
= distance of nearest point(s) to hyperplane

Preview of geometric intuition
nehind SVM training formulation:

Let y(x,a,b) = ax + b be a “linear discriminant”, or a “decision function”
for a 1-dimensional classification task. Predict positive class when y(x) > 0

Y4 y(x,2,-5)
" margin Put little “pegs” on the training data.
—0.5 Positive examples get an “upward” peg.
A | Negative examples get a “downward” peg.
?I } } } } } . . .

Doesn’t matter what height of pegs is.
Assume they have height = 1.
Constraint: linear discriminant must pass

above all upward pegs, and must pass
below all the downward pegs

Preview of geometric intuition
nehind SVM training formulation:

Let y(x,a,b) = ax + b be a “linear discriminant”, or a “decision function”
for a 1-dimensional classification task. Predict positive class when y(x) > 0

Different combinations of (@, b) can

: ?: — :|4_i_> satisfy these “above/below the pegs”
~ ¢ constraints.

margin
=0.67 Each choice has a different margin.

Each choice may perform differently on
test data than the other choices.

Preview of geometric intuition
nehind SVM training formulation:

Let y(x,a,b) = ax + b be a “linear discriminant”, or a “decision function”
for a 1-dimensional classification task. Predict positive class when y(x) > 0

margin
=3.0

I_% \

? L Key idea of SVMs: the choice of (a, b)
having smallest slope |a| is the unique
linear discriminant having y(x) = 0 at
the midpoint between the closest positive
and negative examples, and therefore has
the maximum margin.

OJIOT

r. L
’ 37

SVMs prefer this choice among all others.

Hyperplane geometry

* How to express distance of a point to a hyperplane,
i.e. the magnitude of the margin?

Linear discriminant is y(x, w,b) = wix + b,
or y(x) for short. Hyperplane is y(x) = 0.

: : 4
Point X can be writtenas x = xg + r

where X is projection onto plane Iwll
and |w| = Vvw!w is length of w.

Since y(xg) = 0 we have

—————————————————

WT<X—7’ hid)—I—b:() =iy =22 E
lwll = i

/

signed distance
to hyperplane! (‘r’ is then really r(x,w, b))

Classification from hyperplane

* Given training set D = {(x1,t1),..., (Xn,tN)}
where class labels t; € {—1,+1}.

. . . y >0
e Can classify new point x using) —
sign of signed distance: y<0

t = sign (y(}i’ VT" b)> 2 x,

predicted w X
class label = sign (y(x, w, b))

= sign (WTX + b) X4

v

(+1 y>0 W
where sign(y) =<0 y=0 “~ /

L -1 y <0 means “not sure”

Maximizing “the margin” (15t attempt)

Given training set D = {(x1,t1),...,(Xn,tN)}
where class labels ¢; € {1, +1}.

Can we define the “margin” to be

the smallest signed distance to all
points, and try to maximize it?

max[min 7r;] B wlix; +b
w,b - i=1..N Ty —
—_— [w]
margin?

M NO! This is “make all points be in front
sl of the hyperplane as far as possible.”

As far as possible is +o00, and we’re not even using ¢, &

Maximizing “the margin” (correct)

Given training set D = {(x1,t1),...,(Xn,tN)}
where class labels ¢; € {1, +1}.

Fix: Make ¢, = —1 cases be behind
the hyperplane as far as possible.

max [min t;r; } whix;+b
w,b - i=1..N Ty —
—_— [w]|
margin!

YES! Margin is negative if any point is
not in the halfspace assigned by ¢, .

<L

Maximizing “the margin” (correct)

Given training set D = {(x1,t1),...,(Xn,tN)}
where class labels ¢; € {1, +1}.

Fix: Make ¢, = —1 cases be behind

- ry >0
the hyperplane as far as possible. “ W x
max [min ¢;r; } w'x; +b r2 > 0
w,b 1=1..N ri = H X2 0
~ D' -~ HWH v : —
margin! y <0 ® x3
: —rg3 >0

YES! Margin <0 if any misclassified. ::QX4

—ry >0

YES! Margin becomes positive when all
data is separated.

AR

Maximizing “the margin” (correct)

Given training set D = {(x1,t1),...,(Xn,tN)}
where class labels ¢; € {1, +1}.

Fix: Make ¢, = —1 cases be behind

. ry >0
the hyperplane as far as possible. mx
max | min t;r; ‘
Wb [i=1.N } Ty =
ma;;in!
YES! Margin <0 if any misclassified. @

YES! Margin >0 if data fully separated.

YES! Margin is bounded from above.

Support Vectors

Data point X; is a “support vector” if no other data
point has strictly smaller distance to the hyperplane

Wi

.
.
o*
.
“

1 support vector (of 4)

The support vectors are sufficient to determine the
hyperplane. Other points are irrelevant!

Towards constrained programming

Goal: Learn classifier by solving this max-min problem:

i ot (WTXi + b)]
max | min
w,b | i=1..N | w||

Strategy: Formulate as constrained programming, so
that we can use powerful optimization algorithms.

Idea: Express the min with a set of N constraints:

1=1..N

max 7 such that | <

Wbrv\ '\ HWH

introduce new variable
r € R to be margin

OK! But these constraints are non-linear in w.
Can we make them linear somehow?

Why aim for linear constraints?

Because we can use faster optimization algorithms!
Hopefully quadratic program optimizers! (faster “solvers”)

#A CVXOPT User's Guide
Solvers and scripting (programming) languages
Quadratic Programming ~ Name
AMPL A popular modeling language for large-scale mathema

The function qgp is aninterface for quadratic programs.

: . .) . CPLEX Popular solver with an API (C, C++, Java, .Net, Pythor
It provides the option of using the quadratic programming S
solver from MOSEK. Cinction A nonlinear solver adjusted to spreadsheets in which fi
cvxopt.solvers. qp (P,q[,G,h[,A,b[,solver[,initvals] 11 1) GAMS A high-level modeling system for mathematical optimiz
Solves the pair of primal and dual convex quadratic programs v Gurobi Solver with parallel algorithms for large-scale linear pr
L . IPOPT Ipopt (Interior Point OPTimizer) is a software package
minimize (1/2)z2"Pz + q"z <«— x will represent :
. Maple General-purpose programming language for mathema
subject to Gz < h<+—— our [W b}
Ar = b MATLAB A general-purpose and matrix-oriented programming-
o= parameters »
Mathematica | A general-purpose programming-language for mathen

al ready handles linear MOSEK A solver for large scale optimization with API for sever
inequality constraints

21

https://cvxopt.org/userguide/coneprog.html#quadratic-programming

https://cvxopt.org/userguide/coneprog.html

Towards quadratic programming

First, move non-linear ||w|| term out of the denominator

max 7 such that THWH <t (w' XZ—|—b) fori=1,...,N

Non-linear in w, . Linearin w,b! &
—= Butcanwe somehow (t;, X; are constants)
&' make this side linear?

Observation: The scale of w, b is arbitrary in this
formulation, since y(x, aw, ab) = a(w' x + b) defines
the exact same decision boundary for any a > 0, and
likewise ||aw|| = a ||w]|.

This means it’s OK to restrict our search space to only
w, b for which ||[w|| = (something). Still max-margin!

Towards quadratic programming

Idea: Use this “degree of freedom” in w,b to search
only solutions where r ||w|| takes some constant value.

1D example y(z,w,b) = wz +b
D = {(x1,t1), (x2,t2)}

={(2,-1),(8,+1)} y(z,1,—4)
1
y(w2)

—(O—— ——— —
r\w\\.x{ _} x

Towards quadratic programming

Idea: Use this “degree of freedom” in w,b to search
only solutions where r ||w|| takes some constant value.

1D example y(z,w,b) = wz +b

D = {(a:l,tl), (3327t2)}
— {(2,-1),(8,+1)}
71

T‘w‘ — :‘ I\—) :._5;

Towards quadratic programming

Idea: Use this “degree of freedom” in w,b to search
only solutions where r ||w|| takes some constant value.

1D example y(z,2,~8)

D = {(a:l,tl), (3327t2)}
— {(2,-1),(8,+1)}
71

T‘w‘\.:, ——t >
N \7

Towards quadratic programming

Idea: Use this “degree of freedom” in w,b to search
only solutions where r ||w|| takes some constant value.

1D example y(z,2,-8) Choose r Hw|| =1 arbitrarily Now

D = {(x1,11), (w2,12)}
={(2,-1),(8,+1)}

Yy Y 4
- {
y(z,5,—2)
> ..

r|w
(not restricted (tant)

O De constan constan
to be constant)] From among all w, b that

1 define equivalent deC|S|on
e this is the unique one
v that satisfies r |w| = 1,

Towards quadratic programming

Idea: Use this “degree of freedom” in w,b to search
only solutions where r ||w|| takes some constant value.

1D example y(@,2, —8) Choose r [|[w|| = 1 arbitrarily. Now

D = {(z1,t1), (22,12)} we automatically consider only w, b
={2-1.6.+1) y(z,1,—4) for whichil < #;y(x;, w, b)ifor all i
Y Y 4 Linear both sides! (=,

r|wl
(not restricted
to be constant)
Notice: with 7 |w| = 1 constraint,
the maximum margin 7 happens
27 when y(aj) is “flattest” possible,

M i.e. when |w| smallest possible!

Can we understand what we
did using our toy 1D example?

objective:
push r as high
as is feasible!

-4 -3 -2-1 0 1 2 3 4
w

where b = —4w (intercept held constant at 4)

max r
w,b,r

s.t. 7 |w|

r|w]

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

< 2w —2>

A

Sw + b

(not tight)

(not tight)

28

Can we understand what we
did using our toy 1D example?

-4 -3 -2-1 0 1 2 3 4
w

where b = —4w (intercept held constant at 4)

max r
w,b,r

s.t. 7 |w|

r|w]

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

< 2w —2>

A

Sw + b

(tight)

(not tight)

29

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

Can we understand what we oo |

did using our toy 1D example? st. 7 w| < —2w—b [(nottight

riwl < 8w-+b & (not tight)

XXX XD
S

SR

Q

o

-4 -3 -2-1 0 1 2 3 4
w
9

where b = —Jw (intercept held constant at 4.5) 30

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

Can we understand what we
did using our toy 1D example?

SRR

o

-4 -3 -2-1 0 1 2 3 4
w

where b = —5w (intercept held constant at 5)

max r
w,b,r

s.t. r \wl < 2w —2> % (not tight)

rlw| < Sw4+b R (not tight)

31

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

Can we understand what we oo |
did using our toy 1D example? st. 7w < —2w—b V] (tignt
rlw| < Sw4+b R (tght)

XX

%

0
ﬂ

-4 -3 -2-1 0 1 2 3 4
w

where b = —5w (intercept held constant at 5) 2+

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

Can we understand what we oo |
did using our toy 1D example? st. 7w < —2w—b V] (tignt
rlw| < Sw4+b R (tght)
‘ y($,2,——10)

o | Rescaling w, b

E{ gives equivalent

solutions!

ol

-4 -3 -2-1 0 1 2 3 4
w

where b = —5w (intercept held constant at 5) 23

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

Can we understand what we oo |
did using our toy 1D example? st rlw| < —2w—b] tign
rlw| < Sw4+b R (tght)
[7“ w| = 1]
Y 4
RS (violated) y(zx,2,—10)
0%
85 For everyr > (
5 | there is now
a unique w, b -0 —E—

-4 -3 -2 -1 0
w

corresponding.

BUT if data not
separable, now
infeasible, since
can’t have r < 0!

where b = —5w (intercept held constant at 5)

16

34

Can we understand what we
did using our toy 1D example?

we choose to
| optimize only
over subspace
satisfying
rlw| =1

-4 -3 -2-1 0 1 2 3 4
w

where b = —5w (intercept held constant at 5)

max r
w,b,r

s.t. r

T

r

S

S

IA A

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

—2w — b
Sw + b

(tight)

(tight)

35

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

4

[1 H
i . 2 T
Can we understand what we ;UL oW | Linear SVM
did usi 1D la? L i formulation
id using our toy 1D example? | ¢ 1< 2w —b | forouriD
i 1< Sw4+b i toy problem!!
Y 4

maximizing r
equivalent to

minimizing |w]|,
so equivalentto |
minimizing w

-4 -3 -2-1 0 1 2 3 4
w

where b = —5w (intercept held constant at 5)

36

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

[1 H
i . 2 T
Can we understand what we ;UL oW | Linear SVM
did usi 1D la? L i formulation
id using our toy 1D example? | ¢ 1< 2w —b | forouriD
i 1< Sw4+b i toy problem!!

/
\

R KR RIRIS X RIIRRS Y 4

optimizing over
this subspace
forces y = +£1
at support vectors
by definition

-4 -3 -2-1 0 1 2 3 4
w

where b = —5w (intercept held constant at 5) .

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programmmg

Can we understand what we
did using our toy 1D example?

o e

optimizing over

s.t. 1 < —2w—0b E for our 1D

Linear SVM
formulation

toy problem!!

forces y = +1 \f{
at support vectors
by definition,

even when margin |
is not yet maximal |

-4 -3 -2-1 0 1 2 3 4
w

where b = —3w (intercept held constant at 2.5)

38

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

Can we understand what we
did using our toy 1D example?

/ (tight)

\ (not tight)

1
§|W|2

39

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programming

Can we understand what we
did using our toy 1D example? st 1< —2w—1b

N (tight)

7//A (not tight)
N

1
5|W|2

40

D = {(x1,t1), (w2,12) }
={(2,-1),(8,+1)}

Towards quadratic programmmg

A Y

Can we understand what we fgl}? %’Uﬂ
did using our toy 1D example? st 1< —2w—b 7 (tight
1< 8w+b N (tight)
6 %|W|2 4.5 Y

Notice the training obJectlve Lw? is convex!

= =2 -1 o 1 2 3 |Alsotrueof 1 |lw]||”in higher dimensions.
That means we can find a global optimum!

41

Linear SVM for
So what have we done? |separable data

max r such that r|w| <t (w'x;+b) fori=1,...,N

w,b,r

T HWH — 1 (we added this constraint)

which simplifies to

1
magc W such that 1 < ¢; (WTXi + b) fori=1,...
W, W

which is equivalent to

1
min 5 |w]||® such that 1 <t, (Ww'x; +b) fori=1,...,N

w,b

(w

(.5, which we can apply quadratic programming solvers to!!

Linear SVM with Hard Margin

1

mi? 5 lw|® st. 1<t (Wwix;+0b) Vi=1,...

* This is called a hard margin linear SVM formulation.

* If data non-separable, then no w, b can satisfy all
1 <t; (w'x; +b) simultaneously.
* Their intersection in (w, b)-space is an empty set.

* In that case, a quadratic programming solver will
report the problem instance as being ‘infeasible’

* No useful w, b will be computed.
* This is what we “gave up” by assuming r = ﬁ

What about non-separable data?

separable non-separable
O O
/ - P,
O y O
O O m

What about non-separable data?

Cover’s theorem

* Option 1: increase the dimensionality via

some non-linear feature transformation

T

@@@OO 8O+ +

Image source: Wikimedia Commons

What about non-separable data?

e Option 2: introduce an SVM formulation that merely
penalizes non-separation, rather than forbidding it.

* Doesn’t magically make data separable, but at least gives
us a useful solution w, b when data is non-separable!

* |dea: allow margin constraints ., -

to be violated, but introduce
variable & > 0 to measure

how violated constraint i is,
if at all. y=0 °

e Fach constraint becomes: y=-1

1—& <t; (w'x; +b) .
= “ksi”

Linear Soft Margin SVM

. 2 N
min g [lw|"+ O30, &

subject to 1—¢&;, <1, (WTXZ'—|—b),
>0 Ve=1,...,N

* Now, for every possible w, b there exists a setting of
slack variables &; that make the constraints feasible.

* There is also a ‘force’ of strength C' > 0 pushing each
slack variable &; to be small (encourages constraint i).
e As (' — oo, tightens to data, reducing to hard-margin SVM

* Still a quadratic program with linear constraints!

Non-Linear Soft-Margin SVM

* Ildea: apply non-linear transformation

to features like we did for linear models.
}T

x:[azl o -+ ID Iﬁl

¢=[01(%) da2(x) - om(x)]"

W:[’wl wo - (Vi

» Replace features! Easy! Are we done yet? | &

min 3 [w|* +C 2L, &

w.bE where we precompute all

subject to 1 —¢&; <t; (w l¢z.+ b) - ¢7;f: Qb(Tz) i
ting t
& >0 ‘v’z—l N efore formulating the

actual SVM instance

The SVM formulations so far don’t
scale with number of features

* Suppose we want to use LOTS of features, and then

tune regularization term C to prevent over-fitting,
rather than hard-limiting our features.

* Example: Polynomial basis with all cross-terms

T T If we want polynomials up to degree d from our
X =[N 32‘2}]] D original features, new dimension M is O(D%)!

— 1T
d(x)= |1 x> a7 T2 TF - TiTS Tx5 T3]

* To specify our SVM training objective -
we must explicitly build this entire & _ ¢ (x2)
N x M matrix inside the computer!

=

Towards a scalable SVM formulation

Sketch of the plan:

1. Write an equivalent “dual” formulation of our
current SVM training problem (the “primal”).

2. Write our original hyperplane variables w, b
in terms of the new “dual variables” a.

3. Explain the|“kernel trick” and how by optimizing
over dual variables we avoid computing & matrix.

4. Show that we can recover optimal w,b from
the optimal a values after optimization completes.

1. Write dual of hard-margin SVM

Primal formulation of hard-margin SVM training (rearranged).

A 1 1_tz 1
min max S ~ wl? +Za y(xi))

Equivalent formulation of hard-margin SVM training.

We have introduced “Lagrange multipliers” a = [al e a,N],
one for each constraint of form f(w,b) < 0 in the primal.

Remember: y(x) is really y(x, w,b) = wl ¢(x) + b, so a function of w,b.

1. Write dual of hard-margin SVM

Why are these equivalent problems?

1—tux:) <0 < max a. (1l —=tu(x)) =0 If the primal is feasible,
iy(xi) < a; >0 i iy(xi)) X the dual cannot be at

l—ty(x)>0 < max a: (1l —t:y(x:)) = 400 a minimum unless w, b
zy(Z) a; >0 Z(Zy(Z)) satisfy all < constraints.

1. Write dual of hard-margin SVM

If data separable, primal is strictly feasible (“Slater’s condition”) ...

“for fixed w, b maximize over a”

min max: o HWH + Zaz tiy(x;))
w,b

By “Slater’s condition,” can
swap min-max for max-min
and still be equivalent!

m;l(})(mln — HWH + Zaz tiy(xi))

7

“for fixed a minimize over w, b”

2. Write w in terms of dual vars a
for hard-margin SVM

For a fixed setting of dual variables a, can the optimal
setting w™ be expressed in closed form?

Let /(w,b,a HWH +Zaz tiy(x;))

Then Vg /l(w,b,a) =V B ||WH2] + va la; (1 —tiy(x;))]

N
=W — Z ait;p(x;)
i=1

Setting gradient to zero gives w =) ait;p(x;) Yes!

1=1

2. Write b in terms of dual vars a
for hard-margin SVM

For a fixed setting of dual variables a, can the optimal
setting b* be expressed in closed form?

(1 S
Take 2 (w,b.a) = 5o |2 Iwl| + 3 5 fos (1~ tiyox)
1=1 :

N
=0 — Z aiti
1=1

Setting derivative to zero gives an additional constraint

on the dual problem: [& Not expression for b itself, but

Z ait; =0 dual variables must satisfy
i=1 this for b* to be feasible.

2. Simplitying the dual formulation

Use y(x) = wl¢(x)+b and separate the sums of ¢(w, b, a)

N

{(w,b,a) = %WTW + Zaz Zaz wlo(x;)

’1,_

—Zal —W(—QZathbXZ)— 0)b

Zazt b

Zat O]

Defined in terms of only dual

L& variables and inner products!
)

57

2. Final dual formulation of hard-
margin SVM training

Dual formulation of hard-margin SVM training, final form:

itk (%, %)

J

v
kernel function

N
subject to Zaiti =0
i=1

where k(x,x') = ¢(x)? ¢(x’) for finite-dimensional feature

spaces, or more generally k(x,x") = (¢(x), ¢(x")) for possibly
infinite-dimensional feature space ¢(-). this s why we really

still equivalent to primal! Still a quadratic program! /e sur
Most importantly, expressed in terms of a kernel, not features!

3. The “Kernel trick”

How does an SVM in terms of k(x;,%x;) = (¢(x;), (%))
rather than ¢(x;) help us to ‘scale’ better?

Reason: We can now train our SVM one of two ways:

(Nx M) &=

or

(NxN) K=

The “Gram matrix”

58

[1 (x1)
¢1(x2)

1 (x)

II’J(Xl, Xl)
k(XQ, X1)

| k(xn,X1)

dn(X1)
O (X2)

03] (.XN)

k’(Xl, Xg)
k‘(XQ, XQ)

k(xn,X2)

<— For primal formulation.
Good when NV > M, i.e. fewer
features than training points.

For dual formulation.
_/Good when N < M,
k(X1,XN) | je. more features than
k(X27 XN) training points, including
M = o0, which is the
case for the popular
k(XN,XN)] “Gaussian kernel”!

3. The “Kernel trick”

Computing k(x,x') = (¢(x), ¢(x")) doesn’t require us
to explicitly compute ¢(x) or ¢(x’), can pre-simplify!

Example: k(x,x') = (x'x' +1)% —

“Polynomial kernel”
of degree 2 with coefficient 1

If x=|z; xQ}T then k(x,x') = (212} + xoxh + 1)°

whereas qb(x):[l V2z1 V2x0 V2zxi1T0 T2 23

}T

is the feature transformation that & corresponds to.

In other words: can just compute the pre-simplified

expression (z12} + zoxh 4+ 1)* directly (the “trick”)

without ever creating vectors ¢(x) or ¢(x’).

4. Making a prediction

Suppose we do find a setting a = [al ce aN} that
solves the dual SVM formulation.

Then what? How to use a to make an actual prediction?

y(x) = w' ¢(x) + b

N
. = (Z aiti¢(xi)> d(x) + b
i=1
[w = ; ait;P(x;) }—/ N Prediction is just a weighted sum
- of kernel evaluations between x
(from earlier) =b+ Z aitik(%i;) f5ng training data! Each X;
i=1

\ influences y in direction ¢; with
strength proportional to weight a;

60 and similarity measure k(x;, X).

4. Making a prediction

/1 < t;y(x:)
Duality theory tells that constraint z in the primal is

tight (support vector!) if and only if a; > 0 in the dual.

Y(x) = Z a;tik(x;,x)+b where S ={i : a; >0}

1€S X3 < dual vars
! X e
Tat FU S o a1 >0
Therefore, more specifically: | 7“1 e , o =0
Prediction is weighted sum of as =0
kernel evaluations between X ay >0
|
and the support vectors only! : as >0
— S ag ="
After training, support vectors need I X5 "'._‘ a7 >0
to be remembered, but all otherdata | ¥ = —1 o T
(with a; =0) can be discarded! %6 1

" 61

This SVM only needs to remember 4 data points after training.

4. Making a prediction

Final detail: how do we solve for the intercept H*?

Observation: any support vector x; satisfies 1 = t,;y(x;)

(tight)
1 = t,,; (b + Z CLj?fjk(XZ’, Xj))

jES

= | b=1; — Zajtjk(Xi,Xj) for any choice i € S
JES

Therefore, the optimal dual variables a™ determine
the optimal primal variables w™, b™

1D Linear Example

D = {(z1,t1), (w2,1l2), (v3,13)} | o — % & @
={(2,—1),(8,+1),(10,+1)}

Primal (hard-margin) Dual titik(xi, x5) = titjoizg

min le | 4 —16 —20]

wb 2 max 17a — §aT 16 64 80

s.b. 1< —2w—b azo —20 80 100 |

1< 8w+b
1§ 10’U]—|—b S.t. —0/1‘|‘a2—|—a320

w* — altlxl -+ CLQtQ.CUQ — 1

J 11 1 g7
b* =t — ait12127 « a = [18 18 O]
— agtoxoxy = —% =112}

(here we chose to compute b with respect to support vector 1)

1D Linear Example (closer look)

1. 1(1)2_ 1

Primal objective value for w* = 5 is 5(3 =

- 18

forbidden by Dual objective for a* is also -= (“strong duality”)

constraint asz > 0 18

Dual objective over a1, a;
10 | ' 008 Dual (all separate terms)

0.07

0.08

0.06 max ai + as + as
a>0

0.05 —QQ% +16a1a2 +20a;a3
0.04 —32@% —30azas

— 5042
0.02

0.06

an

0.04

s.t. a3 = a1 — ay

0.02
0.01

0.00 0.00

0.00 0.02 0.04 0.06 0.08 0.10

64

Popular kernel functions

Linear kernel
k(x,x") = x'x’

* Reduces problem to a Linear SVM.

 Larger value when points by are ‘alighed” when
treated as vectors

x' x = x| ||| cos &

 Corresponds to ¢(x) =x

Popular kernel functions

Polynomial kernel of degree d with coefficient c

e Popular kernel. Typically use d = 2 (up to quadratic).

e Coefficient ¢ scales the low-order terms relative to
the highest-order terms.

* For x € RY, d = 2 corresponds to features:
P(x) = [c V2er1 -+ A 2cxp V2xixe -+ V2x1Tp
\/5332:1;3 \/§2D \/§D_1D az% x%
NG
o

vector of dimension M = (D;;d) (D =100,d =4 = 4.6 M features!)

Polynomial kernel of degree d = 2, coefficient c = 0

Popular kernel functions

- 7 o = L TS
i i o LR
N +mu_.+ + ++ ++ —
t, o+ + S ++ + + 4+ F c
+ ++ o @O OO@._..Hr s -
+ . 3+ 0790 o + . 9
i i Q oDt O X
+ o ©O ©9 m@v._v —_—
a 8, %0 © ++ o .2
Lt §B o o§ % +H+t 7, c
a5 i Om o B O
=t OﬁNu o) 0 O + [
1, "o o © X 5 o qvm ©
% @ @mv@ o o %6 ° ' v ©
" +++O o 8 8 + T s 3
+ %%O 0) o mnquO = O
+++ OO O + + -
o O o5 O ot +— (©
= Cg '@ 9 0 O T o= un
-+ o © O O =
+ o © s, © ©
++ + o o O @u + O W
++ + Co O @Px0 ®ot t Q
Figi o o @ 5 0 o ¥
+ O +
et ™ @ om%uo o 4 T
+ + S+, i
+ 4 oS & fiF
o4t Sl LA T
= B + ¥ -
. H +# i +++W++ i
L. L R
|+I
t _+++_ il - el + +_++

Popular kernel functions | fcior

(RBF) kernel

Gaussian kernel with spread coefficient ~y

k(x,x") = exp (—’y |x — X/HZ) where v > 0

e Default for sci-kit learn! |class skiearn.svm. svc (C=1.0, kernel="bf,

* Coefficient ¥ controls how far away a training point x;
can influence the prediction for a new point x.

e For x € R” corresponds to feature transformation
to infinite-dimensional space ¢(x) € R*, where the
output feature in dimension d involves

polynomial kernel of degree d. 'C?

Gaussian kernel

Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.

O = support vectors

Data non-separable in two dimensions, but separable
in the infinite-dimensional space of Gaussian kernel!

Image credit: Christopher M. Bishop

69

—

2D example

For hard-margin, linear
discriminant always Q

takes value {-1, +1}

at each support vector

y=+1

1D example, hard-margin (C = infinity)

SVM with RBF kernel on non-separable 1D data

= svm.decision_function
— sym.predict

O negative data

O positive data

Training points

=4 “vote up” or ¥
“vote down” y =
0 2 4 £ 8 10 12

1D example, soft-margin (C = 1.0)

SVM with RBF kernel on non-separable 1D data

3
= svm.decision_function
- svm.predict
2 1 O negative data
O positive data
g .« slack!
11 ©

o

" sladk!

Gamma vs C for regularization

y=10"%,C=10"2 y=10°C=10"2 y=10,C=10"2

over-fit

https://scikit-learn.org/stable/auto examples/svm/plot rbf parameters.html 71

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

Techniques for Constructing New Kernels.

from Bishop, 6.2

Given valid kernels % (x, x”) and k5 (x, x’), the following new kernels will also

be valid:

b,

w

~

T e R R e

w

.
~

=

~
~

_
PN N AT TN BT T BT DN TN TN AT NG TN TN

o o R e o o R R R o B e s

~

~
~

?}\4

~
~

w

~
~

2N

-~
~

~
N S S S S S S SN N N

=

~
~

w

ka(Xa,

cky(x,x")
FOk (6, x) £ ()
a (k1 (5,%))
exp (k1 (x,%))
ki(x,x") + ka(x,x")
kl(x x" ko (x,x)

ks (¢(x),
x T Ax’

(x))

Xo) + kb (Xp, X))
ka(xaa X;)kb(Xb, X;))

where ¢ > 0 is a constant, f(-) is any function, ¢(-) is a polynomial with nonneg-

ative coefficients, ¢(x) is a function from x to R, ks (-,

) is a valid kernel in

RM_ Aisa symmetric positive semidefinite matrix, X, and x; are variables (not
necessarily disjoint) with x = (x,, X3), and k, and k; are valid kernel functions
over their respective spaces.

72

More on kernels to come

* We’ll revisit kernels again when studying
Gaussian Processes

Linear plus Periodic

A linear kernel plus a periodic results in functions which are

periodic with increasing mean as we move away from the origin.

From https://www.cs.toronto.edu/~duvenaud/cookbook/

73

https://www.cs.toronto.edu/~duvenaud/cookbook/

SVM Summary

* Advantages:
* Good generalization principle, theoretical justification
e Can be formulated as convex quadratic program
e Can use domain expertise to design good kernels
e Kernel framework very flexible (vectors, sets, strings)
Scales to large (or even infinite) feature spaces
* Predicts from sparse subset of data (non-parametric)

* Disadvantages:

* Can be slow to train, sensitive to params, hard to predict
* Sensitive to feature normalization

* And of course, like any model, can over/under-fit.

Much more to SVMs!

* We explicitly covered:
* linear hard-margin SVM primal for binary classification
* linear soft-margin SVM primal for binary classification
* non-linear hard-margin SVM primal for binary classification
* non-linear hard-margin SVM dual for binary classification

* We did not cover:
e soft-margin SVM dual for binary classification (doable!)
Hinge-loss formulation of SVM
SVM for multi-class classification (k-way etc)
SVM for regression
Vapnik-Chervonenkis theory (VC theory)

 VC dimension
e Generalization bounds

PRML Readings

§4.1.0 Discriminant functions
§4.1.1 Two classes
§6.0.0 Kernel Methods

§6.2.0 Constructing Kernels
- (only up to and including equation 6.23)

§7.0.0 Sparse Kernel Machines
§7.1.0 Maximum Margin Classifiers
§7.1.1 Overlapping class distributions

- (only up to and including equation 7.21, i.e., primal formulation only)

