Support Vector Machines

Support Vector Machines

- Early ideas developed in 1960s and 1970s by Vladimir Vapnik and Alexey Chervonenkis in USSR
- Major developments in 1990s by Vapnik and many others (Corinna Cortes, Bernhard Schölkopf, ...)
- Originally developed for binary classification tasks
- Elegant theory
 - Clear notion of model 'capacity'
 - Generalization bounds
- Works very well in practice

Using Support Vector Machines

sklearn.svm.SVC

class sklearn.svm. **SVC** (C=1.0, kernel='rbf', degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None) [source]

Parameters:

C float, optional (default=1.0)

Penalty parameter C of the error term.

kernel: string, optional (default='rbf')

Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable.

degree: int, optional (default=3)

Degree of the polynomial kernel function ('poly'). Ignored by all other kernels.

? gamma: float, optional (default='auto')

Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

coef0: float, optional (default=0.0)

Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'.

Lots of terminology and concepts <u>specific to SVMs</u>. To use SVMs effectively should know what they mean!

Using Support Vector Machines

sklearn.svm.SVC

1.4.6. Kernel functions

The kernel function can be any of the following:

? • linear: $\langle x, x'
angle$.

Reading documentation isn't enough to understand what these things mean, or why SVMs are expressed this way!

- ? polynomial: $(\gamma\langle x,x'
 angle+r)^d$. d is specified by keyword degree , r by coef0 .
- ? rbf: $\exp(-\gamma \|x x'\|^2)$. γ is specified by keyword gamma , must be greater than 0.
 - sigmoid $(anh(\gamma\langle x,x'
 angle+r))$, where r is specified by <code>coef0</code> .

1.4.6.1. Custom Kernels

You can define your own kernels by either giving the kernel as a python function or by precomputing the Gram matrix.

Using Support Vector Machines

sklearn.svm.SVC

None of this makes sense without building it up piece-by-piece...

1.4.7.1. SVC

Given training vectors $x_i \in \mathbb{R}^p$, i=1,..., n, in two classes, and a vector $y \in \{1, -1\}^n$, SVC solves the following primal problem:

Linear Discriminant Functions

- If data is linearly separable, can choose from among many possible separating hyperplanes
- Is any choice of w better than the rest? In what sense?
- Unregularized logistic regression <u>does not care</u>; all equally good
- Regularized logistic regression <u>cares</u>, but does biasing each w_i toward zero give a hyperplane that satisfies useful definition of "best"?

Choosing a hyperplane

- Suppose we choose a hyperplane that passes close to the training data
- BUT training data is just a small subsample of all possible data.
- New class samples likely to be 'near' training data of that class
- We're setting ourselves up to make mistakes on test data!

Notice that this concern hinges on an assumption that the data distribution is somehow "smooth," where the presence of a sample of class *C* indicates a higher probability of observing class *C* "nearby" in feature space.

Maximum margin principle

• Idea: seek the separating hyperplane that has maximum margin from the training samples

Preview of geometric intuition behind SVM training formulation:

Let y(x, a, b) = ax + b be a "linear discriminant", or a "decision function" for a 1-dimensional classification task. Predict positive class when $y(x) \ge 0$

Put little "pegs" on the training data. Positive examples get an "upward" peg. Negative examples get a "downward" peg.

Doesn't matter what height of pegs is. Assume they have height = 1.

Constraint: linear discriminant must pass *above* all upward pegs, and must pass *below* all the downward pegs

Preview of geometric intuition behind SVM training formulation:

Let y(x, a, b) = ax + b be a "linear discriminant", or a "decision function" for a 1-dimensional classification task. Predict positive class when $y(x) \ge 0$

Different combinations of (a, b) can satisfy these "above/below the pegs" constraints.

Each choice has a different margin.

Each choice may perform differently on test data than the other choices.

Preview of geometric intuition behind SVM training formulation:

Let y(x, a, b) = ax + b be a "linear discriminant", or a "decision function" for a 1-dimensional classification task. Predict positive class when $y(x) \ge 0$

Key idea of SVMs: the choice of (a, b)having *smallest slope* |a| is the unique linear discriminant having y(x) = 0 at the *midpoint* between the closest positive and negative examples, and therefore has the *maximum margin*.

SVMs prefer this choice among all others₁₂

Hyperplane geometry

• How to express distance of a point to a hyperplane, *i.e.* the magnitude of the *margin*?

Classification from hyperplane

- Given training set $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$ where class labels $t_i \in \{-1, +1\}$.
- Can classify new point x using *sign* of signed distance:

y = 0

Maximizing "the margin" (1st attempt)

Given training set $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$ where class labels $t_i \in \{-1, +1\}$.

Can we define the "margin" to be the <u>smallest signed</u> distance to all points, and try to maximize it?

$$\max_{\mathbf{w},b} \left[\underbrace{\min_{i=1..N} r_i}_{\text{margin}?} \right] \qquad r_i = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$$

NO! This is "make all points be <u>in front</u> of the hyperplane as far as possible."

As far as possible is $+\infty$, and we're not even using $t_i \, pprox$

15

Maximizing "the margin" (correct)

Given training set $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$ where class labels $t_i \in \{-1, +1\}$.

Fix: Make $t_i = -1$ cases be <u>behind</u> the hyperplane as far as possible.

$$\max_{\mathbf{w},b} \left[\underbrace{\min_{i=1..N} t_i r_i}_{\text{margin!}} \right] \quad r_i = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$$

<u>YES!</u> Margin is negative if *any* point is not in the halfspace assigned by t_i .

Maximizing "the margin" (correct)

Given training set $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$ where class labels $t_i \in \{-1, +1\}$.

Maximizing "the margin" (correct)

Given training set $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$ where class labels $t_i \in \{-1, +1\}$.

Support Vectors

Data point x_i is a "support vector" if no other data point has strictly smaller distance to the hyperplane

The support vectors are sufficient to determine the hyperplane. Other points are irrelevant!

Towards constrained programming

Goal: Learn classifier by solving this max-min problem:

$$\max_{\mathbf{w},b} \left[\min_{i=1..N} \frac{t_i \left(\mathbf{w}^T \mathbf{x}_i + b \right)}{\|\mathbf{w}\|} \right]$$

Strategy: Formulate as *constrained programming*, so that we can use powerful optimization algorithms.

Idea: Express the $\min_{i=1..N}$ with a set of N constraints:

$$\max_{\mathbf{w},b,r} r \text{ such that } \left(r \leq \frac{t_i \left(\mathbf{w}^T \mathbf{x}_i + b \right)}{\|\mathbf{w}\|} \right) \text{ for } i = 1, \dots, N$$

introduce new variable $r \in \mathbb{R}$ to be *margin*

OK! But these constraints are non-linear in \mathbf{W} . ² Can we make them linear somehow?

Why aim for *linear* constraints?

Because we can use faster optimization algorithms! Hopefully quadratic program optimizers! (faster "solvers")

CVXOPT User's Guide

Quadratic Programming

The function <code>qp</code> is an interface for quadratic programs. It provides the option of using the quadratic programming solver from MOSEK.

cvxopt.solvers. qp (P, q [, G, h [, A, b [, solver [, initvals]]])

Solves the pair of primal and dual convex quadratic programs

minimize $(1/2)x^TPx + q^Tx \leftarrow x$ will representsubject to $Gx \leq h \leftarrow$ our $\begin{bmatrix} \mathbf{w} & b \end{bmatrix}$ Ax = bparametersalready handles linear
inequality constraints

Solvers and scripting (programming) languages [edit

Name	
AMPL	A popular modeling language for large-scale mathematical optimised
CPLEX	Popular solver with an API (C, C++, Java, .Net, Python, Matlat
Excel Solver Function	A nonlinear solver adjusted to spreadsheets in which function
GAMS	A high-level modeling system for mathematical optimization
Gurobi	Solver with parallel algorithms for large-scale linear programs.
IPOPT	Ipopt (Interior Point OPTimizer) is a software package for large
Maple	General-purpose programming language for mathematics. So
MATLAB	A general-purpose and matrix-oriented programming-language
Mathematica	A general-purpose programming-language for mathematics, in
MOSEK	A solver for large scale optimization with API for several language

First, move non-linear $\|\mathbf{w}\|$ term out of the denominator

$$\max_{\mathbf{w},b,r} r \text{ such that } \left[r \| \mathbf{w} \| \right] \leq \left[t_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \right] \text{ for } i = 1, \dots, N$$
Non-linear in \mathbf{w}, r .
But can we somehow
make this side linear?
$$\lim_{t \to t} t_i \left[\mathbf{w} \right] = 1, \dots, N$$

Observation: The scale of \mathbf{w}, b is *arbitrary* in this formulation, since $y(\mathbf{x}, \alpha \mathbf{w}, \alpha b) = \alpha(\mathbf{w}^T \mathbf{x} + b)$ defines the exact same decision boundary for any $\alpha > 0$, and likewise $\|\alpha \mathbf{w}\| = \alpha \|\mathbf{w}\|$.

This means it's OK to *restrict our search* space to only \mathbf{w}, b for which $\|\mathbf{w}\| = (\text{something})$. Still max-margin!

Idea: Use this "degree of freedom" in w, b to search only solutions where r ||w|| takes some *constant* value.

1D example y(x, w, b) = wx + b $\mathcal{D} = \{ (x_1, t_1), (x_2, t_2) \}$ y(x, 1, -4) $= \{(2, -1), (8, +1)\}$ y $\overline{y}(x_2)$ r|w|x $y(x_1)$

Idea: Use this "degree of freedom" in w, b to search only solutions where r ||w|| takes some *constant* value.

1D example y(x, w, b) = wx + b

Idea: Use this "degree of freedom" in w, b to search only solutions where r ||w|| takes some *constant* value.

Idea: Use this "degree of freedom" in \mathbf{w}, b to search only solutions where $r \|\mathbf{w}\|$ takes some *constant* value.

Idea: Use this "degree of freedom" in w, b to search only solutions where r ||w|| takes some *constant* value.

28

 $\mathcal{D} = \{(x_1, t_1), (x_2, t_2)\}$

Can we understand what we did using our toy 1D example?

 $\mathcal{D} = \{ (x_1, t_1), (x_2, t_2) \}$

 $= \{(2, -1), (8, +1)\}$

where b = -4w (intercept held constant at 4)

Can we understand what we did using our toy 1D example?

 $\mathcal{D} = \{ (x_1, t_1), (x_2, t_2) \}$

 $= \{(2, -1), (8, +1)\}$

where $b = -\frac{9}{4}w$ (intercept held constant at 4.5)

Can we understand what we did using our toy 1D example?

 $\mathcal{D} = \{ (x_1, t_1), (x_2, t_2) \}$

where b = -5w (intercept held constant at 5)

Can we understand what we did using our toy 1D example?

 $\mathcal{D} = \{ (x_1, t_1), (x_2, t_2) \}$

where b = -5w (intercept held constant at 5)

where b = -5w (intercept held constant at 5)

 $\mathcal{D} = \{ (x_1, t_1), (x_2, t_2) \}$

where b = -5w (intercept held constant at 5)

 $\mathcal{D} = \{(x_1, t_1), (x_2, t_2)\}$

where b = -5w (intercept held constant at 5)

 $\mathcal{D} = \{(x_1, t_1), (x_2, t_2)\}$

 $\mathcal{D} = \{(x_1, t_1), (x_2, t_2)\} \\ = \{(2, -1), (8, +1)\}$

Towards quadratic programming

where b = -5w (intercept held constant at 5)

 $\mathcal{D} = \{(x_1, t_1), (x_2, t_2)\} \\ = \{(2, -1), (8, +1)\}$

Towards quadratic programming

where b = -5w (intercept held constant at 5)
$\mathcal{D} = \{(x_1, t_1), (x_2, t_2)\}$ $= \{(2, -1), (8, +1)\}$

Towards quadratic programming

Towards quadratic programming

Can we understand what we did using our toy 1D example?

 $\mathcal{D} = \{ (x_1, t_1), (x_2, t_2) \}$

 $= \{(2, -1), (8, +1)\}$

Towards quadratic programming

Can we understand what we did using our toy 1D example?

 $\mathcal{D} = \{ (x_1, t_1), (x_2, t_2) \}$

 $= \{(2, -1), (8, +1)\}$

 $\mathcal{D} = \{ (x_1, t_1), (x_2, t_2) \}$ $= \{(2, -1), (8, +1)\}$ Towards quadratic programming $\min_{w,b} \frac{1}{2}w^2$ Can we understand what we did using our toy 1D example? s.t. $1 \le -2w - b$ (tight) $1 \leq 8w+b$ (tight) $\frac{1}{2}|W|^2$ 4.5 4.0 - 3.5

So what have we done?

42

$$\max_{\mathbf{w},b,r} r \text{ such that } r \|\mathbf{w}\| \le t_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \text{ for } i = 1, \dots, N$$
$$r \|\mathbf{w}\| = 1 \quad \text{(we added this constraint)}$$

which simplifies to

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|} \text{ such that } 1 \le t_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \text{ for } i = 1, \dots, N$$

which is equivalent to

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \text{ such that } 1 \leq t_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \text{ for } i = 1, \dots, N$$

which we can apply quadratic programming solvers to!!

Linear SVM with Hard Margin

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad 1 \le t_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \quad \forall i = 1, \dots, N$$

- This is called a <u>hard margin</u> <u>linear SVM</u> formulation.
- If data non-separable, then no \mathbf{w} , b can satisfy all $1 \le t_i (\mathbf{w}^T \mathbf{x}_i + b)$ simultaneously.
 - Their intersection in (\mathbf{w}, b) -space is an *empty set*.
- In that case, a quadratic programming solver will report the problem instance as being *'infeasible'*
 - No useful \mathbf{w}, b will be computed.
 - This is what we "gave up" by assuming $r = \frac{1}{\|\mathbf{w}\|}$

What about non-separable data?

What about non-separable data?

Cover's theorem

• **Option 1:** increase the dimensionality via some non-linear feature transformation

What about non-separable data?

- **Option 2:** introduce an SVM formulation that merely <u>penalizes</u> non-separation, rather than <u>forbidding</u> it.
 - Doesn't magically make data separable, but at least gives us a useful solution w, b when data is non-separable!
- Idea: allow margin constraints to be violated, but introduce variable $\xi_i \ge 0$ to measure how violated constraint *i* is, if at all.
- Each constraint becomes:

$$1 - \xi_i \le t_i \left(\mathbf{w}^T \mathbf{x}_i + b \right)$$

<u>Linear</u> Soft Margin SVM

$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i$$

subject to $1 - \xi_i \leq t_i \left(\mathbf{w}^T \mathbf{x}_i + b\right),$
 $\xi_i \geq 0 \quad \forall i = 1, \dots, N$

- Now, for every possible w, b there exists a setting of slack variables ξ_i that make the constraints feasible.
- There is also a 'force' of strength C > 0 pushing each slack variable ξ_i to be small (*encourages* constraint *i*).
 - As $C \to \infty$, tightens to data, reducing to hard-margin SVM
- Still a quadratic program with linear constraints!

Non-Linear Soft-Margin SVM

- Replace features! Easy! Are we done yet?

$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i$$

subject to $1 - \xi_i \leq t_i \left(\mathbf{w}^T \boldsymbol{\phi}_i + b\right),$
 $\xi_i \geq 0 \quad \forall i = 1, \dots, N$

where we precompute all $\phi_i = \phi(\mathbf{x}_i)$ before formulating the actual SVM instance 48

The SVM formulations so far <u>don't</u> <u>scale with number of features</u>

- Suppose we want to use LOTS of features, and then tune regularization term C to prevent over-fitting, rather than hard-limiting our features.
- Example: Polynomial basis with all cross-terms

 $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \bigcup_{D \text{ original features, new dimension } M \text{ is } O(D^d)!}$ $\boldsymbol{\phi}(\mathbf{x}) = \begin{bmatrix} x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 & \cdots & x_1^2x_2^3 & x_1x_2^4 & x_2^5 \end{bmatrix}^T$

• To specify our SVM training objective we must explicitly build this entire $N \times M$ matrix inside the computer! $\Phi = \begin{bmatrix} \phi(\mathbf{x}_1)^T \\ \phi(\mathbf{x}_2)^T \\ \vdots \\ \phi(\mathbf{x}_N)^T \end{bmatrix}$

Towards a scalable SVM formulation

Sketch of the plan:

- 1. Write an equivalent "<u>dual</u>" formulation of our current SVM training problem (the "primal").
- 2. Write our original hyperplane variables \mathbf{w}, b in terms of the new "dual variables" **a**.
- 3. Explain the "kernel trick" and how by optimizing over dual variables we avoid computing Φ matrix.
- 4. Show that we can recover optimal w, b from the optimal a values after optimization completes.

1. Write dual of hard-margin SVM

Primal formulation of hard-margin SVM training (rearranged).

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \left[1 - t_i y(\mathbf{x}_i)\right] \le 0 \quad \forall i = 1, \dots, N$$
$$\min_{\mathbf{w},b} \max_{\mathbf{a} \ge 0} \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^N a_i \left(1 - t_i y(\mathbf{x}_i)\right)$$

Equivalent formulation of hard-margin SVM training.

We have introduced "Lagrange multipliers" $\mathbf{a} = \begin{bmatrix} a_1 & \cdots & a_N \end{bmatrix}$, one for each constraint of form $f(\mathbf{w}, b) \leq 0$ in the primal.

⁵¹ Remember: $y(\mathbf{x})$ is really $y(\mathbf{x}, \mathbf{w}, b) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + b$, so a function of \mathbf{w}, b .

1. Write dual of hard-margin SVM

Why are these equivalent problems?

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \left[1 - t_i y(\mathbf{x}_i)\right] \le 0 \quad \forall i = 1, \dots, N$$
$$\min_{\mathbf{w},b} \max_{\mathbf{a} \ge 0} \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^N a_i \left(1 - t_i y(\mathbf{x}_i)\right)$$

$$1 - t_i y(\mathbf{x}_i) \le 0 \quad \Leftrightarrow \quad \max_{\substack{a_i \ge 0}} a_i (1 - t_i y(\mathbf{x}_i)) = 0$$

$$1 - t_i y(\mathbf{x}_i) > 0 \quad \Leftrightarrow \quad \max_{\substack{a_i \ge 0}} a_i (1 - t_i y(\mathbf{x}_i)) = +\infty$$

If the primal is feasible, the dual cannot be at a minimum unless \mathbf{w}, b satisfy all \leq constraints. You do not need to understand "Slater's condition" for this course, just take it on faith

1. Write dual of hard-margin SVM

If data separable, primal is *strictly* feasible ("Slater's condition") ...

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad 1 - t_i y(\mathbf{x}_i) \le 0 \quad \forall i = 1, \dots, N$$

2. Write \mathbf{w} in terms of dual vars \mathbf{a} for hard-margin SVM

For a fixed setting of dual variables \mathbf{a} , can the optimal setting \mathbf{w}^* be expressed in closed form?

Let
$$\ell(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} a_i (1 - t_i y(\mathbf{x}_i))$$

Then $\nabla_{\mathbf{w}} \ell(\mathbf{w}, b, \mathbf{a}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} \|\mathbf{w}\|^2 \right] + \sum_{i=1}^N \nabla_{\mathbf{w}} \left[\frac{a_i}{1 - t_i y(\mathbf{x}_i)} \right]$ = $\mathbf{w} - \sum_{i=1}^N \frac{a_i}{t_i} \phi(\mathbf{x}_i)$

Setting gradient to zero gives $\mathbf{w} = \sum_{i=1}^{n} a_i t_i \phi(\mathbf{x}_i)$ Yes!

2. Write *b* in terms of dual vars **a** for hard-margin SVM

For a fixed setting of dual variables \mathbf{a} , can the optimal setting b^* be expressed in closed form?

Take
$$\frac{\partial \ell}{\partial b}(\mathbf{w}, b, \mathbf{a}) = \frac{\partial \ell}{\partial b} \begin{bmatrix} \frac{1}{2} \|\mathbf{w}\|^2 \end{bmatrix} + \sum_{i=1}^N \frac{\partial \ell}{\partial b} \begin{bmatrix} a_i \left(1 - t_i y(\mathbf{x}_i)\right) \end{bmatrix}$$

= $0 - \sum_{i=1}^N a_i t_i$

Setting derivative to zero gives an additional constraint on the dual problem: N

$$\sum_{i=1}^{N} \frac{a_i}{t_i} t_i = 0$$

Not expression for b^* itself, but dual variables must satisfy *this* for b^* to be feasible.

2. Simplifying the dual formulation

Use $y(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + b$ and separate the sums of $\ell(\mathbf{w}, b, \mathbf{a})$

2. Final dual formulation of hardmargin SVM training

Dual formulation of hard-margin SVM training, **final form**:

$$\max_{\mathbf{a} \ge 0} \sum_{i=1}^{N} a_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j t_i t_j \underbrace{k(\mathbf{x}_i, \mathbf{x}_j)}_{\text{kernel function}}$$
subject to
$$\sum_{i=1}^{N} a_i t_i = 0$$

where $k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\phi}(\mathbf{x})^T \boldsymbol{\phi}(\mathbf{x}')$ for finite-dimensional feature spaces, or more generally $k(\mathbf{x}, \mathbf{x}') = \langle \boldsymbol{\phi}(\mathbf{x}), \boldsymbol{\phi}(\mathbf{x}') \rangle$ for possibly infinite-dimensional feature space $\phi(\cdot)$. this is why we really

went to the trouble

of deriving 'dual

<u>Still</u> equivalent to primal! <u>Still</u> a quadratic program! Most importantly, expressed in terms of a kernel, not features!

3. The "Kernel trick"

How does an SVM in terms of $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle$ rather than $\phi(\mathbf{x}_i)$ help us to 'scale' better?

Reason: We can now train our SVM one of two ways:

$$(N \times M) \quad \Phi = \begin{bmatrix} \phi_1(\mathbf{x}_1) & \cdots & \phi_M(\mathbf{x}_1) \\ \phi_1(\mathbf{x}_2) & \cdots & \phi_M(\mathbf{x}_2) \\ \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_N) & \cdots & \phi_M(\mathbf{x}_N) \end{bmatrix} \quad \overleftarrow{\mathsf{Good when } N \gg M, \text{ i.e. fewer features than training points.}}$$

$$\mathbf{Or}$$

$$(N \times N) \quad \mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ k(\mathbf{x}_2, \mathbf{x}_1) & k(\mathbf{x}_2, \mathbf{x}_2) & \cdots & k(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & k(\mathbf{x}_N, \mathbf{x}_2) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix} \quad \overleftarrow{\mathsf{For dual formulation.}}$$

$$\mathbf{Good when } N \ll M, \text{ i.e. more features than training points, including } M = \infty, \text{ which is the case for the popular } (Gaussian kernel'')$$

M.

the

3. The "Kernel trick"

Computing $k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$ doesn't require us to explicitly compute $\phi(\mathbf{x})$ or $\phi(\mathbf{x}')$, can pre-simplify!

Example: $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^2$ If $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ then $k(\mathbf{x}, \mathbf{x}') = (x_1 x_1' + x_2 x_2' + 1)^2$ whereas $\phi(\mathbf{x}) = \begin{bmatrix} 1 & \sqrt{2}x_1 & \sqrt{2}x_2 & \sqrt{2}x_1x_2 & x_1^2 & x_2^2 \end{bmatrix}^T$ is the feature transformation that k corresponds to.

In other words: can just compute the pre-simplified expression $(x_1x'_1 + x_2x'_2 + 1)^2$ directly (the "trick") without ever creating vectors $\phi(\mathbf{x})$ or $\phi(\mathbf{x}')$.

4. Making a prediction

Suppose we *do* find a setting $\mathbf{a} = \begin{bmatrix} a_1 & \cdots & a_N \end{bmatrix}$ that solves the dual SVM formulation.

Then what? How to use **a** to make an actual *prediction*?

Prediction is just a weighted sum of kernel evaluations between \mathbf{x} and training data! Each \mathbf{x}_i influences y in direction t_i with strength proportional to weight a_i and similarity measure $k(\mathbf{x}_i, \mathbf{x})$.

4. Making a prediction

Duality theory tells that constraint i in the primal is <u>tight</u> (support vector!) if and only if $a_i > 0$ in the dual.

 $y(\mathbf{x}) = \sum a_i t_i k(\mathbf{x}_i, \mathbf{x}) + b \quad \text{where } \mathcal{S} = \{i : a_i > 0\}$ $i \in S$ dual vars \mathbf{X}_3 \mathbf{X}_2 $a_1 > 0$ x_2 Therefore, more specifically: $a_2 = 0$ \mathbf{X}_{2} Prediction is weighted sum of $a_3 = 0$ kernel evaluations between **x** $a_4 > 0$ y = +1and the support vectors only! \mathbf{X}_7 $a_5 > 0$ y = 0 $a_6 = 0$ After training, support vectors need $a_7 > 0$ \mathbf{X}_5 y = -1to be remembered, but all other data x_1 \mathbf{X}_{6} (with $a_i = 0$) can be discarded!

This SVM only needs to remember 4 data points after training.

61

 $1 \le t_i y(\mathbf{x}_i)$

4. Making a prediction

Final detail: how do we solve for the intercept b^* ?

Observation: any support vector \mathbf{x}_i satisfies $1 = t_i y(\mathbf{x}_i)$

$$1 = t_i \left(b + \sum_{j \in S} a_j t_j k(\mathbf{x}_i, \mathbf{x}_j) \right)$$
(tight)

$$\Rightarrow \left| b = t_i - \sum_{j \in S} a_j t_j k(\mathbf{x}_i, \mathbf{x}_j) \right| \text{ for any choice } i \in S$$

Therefore, the optimal dual variables \mathbf{a}^* determine the optimal primal variables \mathbf{w}^*, b^* .

(here we chose to compute *b* with respect to support vector 1)

1D Linear Example (closer look)

Primal objective value for $w^* = \frac{1}{3}$ is $\frac{1}{2}(\frac{1}{3})^2 = \frac{1}{18}$

Dual objective for \mathbf{a}^* is also $\frac{1}{18}$ ("strong duality")

forbidden by

Dual (all separate terms)

$$\begin{array}{rcl}
\max & a_1 + a_2 + a_3 \\
& -2a_1^2 & +16a_1a_2 & +20a_1a_3 \\
& & -32a_2^2 & -80a_2a_3 \\
& & & -50a_3^2 \\
\end{array}$$
s.t. $a_3 = a_1 - a_2$

Dual (all congrate torme)

$$\mathbf{a}^* = \begin{bmatrix} \frac{1}{18} & \frac{1}{18} & 0 \end{bmatrix}^T$$

Popular kernel functions

Linear kernel

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

- Reduces problem to a Linear SVM.
- Larger value when points by are 'aligned' when treated as vectors

$$\mathbf{x}^T \mathbf{x}' = \|\mathbf{x}\| \|\mathbf{x}'\| \cos \theta$$

(bigger when vectors large and aligned)

• Corresponds to $\phi(\mathbf{x}) = \mathbf{x}$

Popular kernel functions

Polynomial kernel of degree d with coefficient c

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^d$$
 where $c \ge 0, d \in \{1, 2, \ldots\}$

- Popular kernel. Typically use d = 2 (up to quadratic).
- Coefficient c scales the low-order terms relative to the highest-order terms.
- For $\mathbf{x} \in \mathbb{R}^{D}$, d = 2 corresponds to features:

$$\phi(\mathbf{x}) = \begin{bmatrix} c & \sqrt{2c}x_1 & \cdots & \sqrt{2c}x_D & \sqrt{2}x_1x_2 & \cdots & \sqrt{2}x_1x_D \\ & \sqrt{2}x_2x_3 & \cdots & \sqrt{2}x_2x_D & \cdots & \sqrt{2}x_{D-1}x_D & x_1^2 & \cdots & x_D^2 \end{bmatrix}^T$$
vector of dimension $M = \begin{pmatrix} D+d \\ d \end{pmatrix}$ $(D = 100, d = 4 \Rightarrow 4.6$ M features!) 66

Popular kernel functions

Polynomial kernel of degree d=2 , coefficient c=0

Recall this example. It was a quadratic kernel!

 $\boldsymbol{\phi}(\mathbf{x}) = \begin{bmatrix} x_1^2 & \sqrt{2}x_1x_2 & x_2^2 \end{bmatrix}$

Unlike the Gaussian kernel for "kernel densities," we don't normalize this version because SVMs do not use the kernel as a density.

Popular kernel functions

Also known as **Radial Basis Function** (RBF) kernel

Gaussian kernel with spread coefficient γ

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2\right) \text{ where } \gamma > 0$$

- Default for sci-kit learn! class sklearn.svm. svc (C=1.0, kernel='rbf',
- Coefficient γ controls how far away a training point \mathbf{x}_i can influence the prediction for a new point \mathbf{x} .
- For $\mathbf{x} \in \mathbb{R}^{D}$, corresponds to feature transformation to infinite-dimensional space $\phi(\mathbf{x}) \in \mathbb{R}^{\infty}$, where the output feature in dimension d involves polynomial kernel of degree d.

You do not need to understand how the infinite-dimensional thing works.

Gaussian kernel

Example of synthetic data from two classes in two dimensions showing contours of constant $y(\mathbf{x})$ obtained from a support vector machine having a Gaussian kernel function. Also shown are the decision boundary, the margin boundaries, and the support vectors.

Data non-separable in two dimensions, but separable in the infinite-dimensional space of Gaussian kernel!

69

O = support vectors

1D example, hard-margin (*C* = infinity)

1D example, soft-margin (C = 1.0)

Gamma vs C for regularization

 $\gamma = 10^{-1}, C = 10^{-2}$

 $\gamma = 10^{-1}, C = 10^{0}$

 $\gamma = 10^{-1}, C = 10^{2}$

 $\gamma = 10^{\circ}, C = 10^{-2}$

 $\gamma = 10^0, C = 10^0$

 $\gamma = 10^{\circ}, C = 10^{2}$

 $\gamma = 10^1, C = 10^{-2}$

 $\gamma = 10^1$, $C = 10^0$

 $\gamma = 10^1, C = 10^2$

Techniques for Constructing New Kernels.

from Bishop, 6.2

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}'$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}_a') + k_b(\mathbf{x}_b, \mathbf{x}_b')$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}_a')k_b(\mathbf{x}_b, \mathbf{x}_b')$$

where c > 0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

More on kernels to come

 We'll revisit kernels again when studying Gaussian Processes

Linear plus Periodic

A linear kernel plus a periodic results in functions which are periodic with increasing mean as we move away from the origin.

From https://www.cs.toronto.edu/~duvenaud/cookbook/
SVM Summary

- Advantages:
 - Good generalization principle, theoretical justification
 - Can be formulated as convex quadratic program
 - Can use domain expertise to design good kernels
 - Kernel framework very flexible (vectors, sets, strings)
 - Scales to large (or even infinite) feature spaces
 - Predicts from sparse subset of data (non-parametric)
- Disadvantages:
 - Can be slow to train, sensitive to params, hard to predict
 - Sensitive to feature normalization
- And of course, like any model, can over/under-fit.

Much more to SVMs!

- We explicitly covered:
 - linear hard-margin SVM primal for binary classification
 - linear soft-margin SVM primal for binary classification
 - non-linear hard-margin SVM primal for binary classification
 - non-linear hard-margin SVM dual for binary classification
- We did not cover:
 - soft-margin SVM dual for binary classification (doable!)
 - Hinge-loss formulation of SVM
 - SVM for multi-class classification (k-way etc)
 - SVM for regression
 - Vapnik-Chervonenkis theory (VC theory)
 - VC dimension
 - Generalization bounds

PRML Readings

§4.1.0 Discriminant functions

§4.1.1 Two classes

§6.0.0 Kernel Methods

§6.2.0 Constructing Kernels

- (only up to and including equation 6.23)

§7.0.0 Sparse Kernel Machines

§7.1.0 Maximum Margin Classifiers

§7.1.1 Overlapping class distributions

- (only up to and including equation 7.21, *i.e.*, primal formulation only)