
Support Vector Machines

2

Support Vector Machines

• Early ideas developed in 1960s and 1970s by Vladimir
Vapnik and Alexey Chervonenkis in USSR
• Major developments in 1990s by Vapnik and many

others (Corinna Cortes, Bernhard Schölkopf, ...)
• Originally developed for binary classification tasks
• Elegant theory
• Clear notion of model ‘capacity’
• Generalization bounds

• Works very well in practice

3

Image credit: Yann LeCun Vapnik

Using Support Vector Machines

4

Lots of terminology and concepts specific to SVMs.
To use SVMs effectively should know what they mean!

?

?

?

?

?

???

Using Support Vector Machines

5

Reading documentation isn’t enough to
understand what these things mean, or
why SVMs are expressed this way!

?

?

?
?

Using Support Vector Machines

6

???

?

?

None of this makes sense without
building it up piece-by-piece...

...so that is what we will do!

?

?

Linear Discriminant Functions

• Is any choice of better than
the rest? In what sense?
• Unregularized logistic regression

does not care; all equally good
• Regularized logistic regression

cares, but does biasing each
toward zero give a hyperplane that
satisfies useful definition of “best”?

7

• If data is linearly separable, can choose from among
many possible separating hyperplanes

• Suppose we choose a hyperplane that passes
close to the training data

Choosing a hyperplane

8

mistake!

• BUT training data is just a small
subsample of all possible data.
• New class samples likely to be

‘near’ training data of that class
• We’re setting ourselves up to

make mistakes on test data!

Notice that this concern hinges on an assumption that the data distribution
is somehow “smooth,” where the presence of a sample of class C indicates
a higher probability of observing class C “nearby” in feature space.

• Idea: seek the separating hyperplane that has
maximum margin from the training samples

Maximum margin principle

9

more likely to generalize less likely to generalize

margin
= distance of nearest point(s) to hyperplane

Preview of geometric intuition
behind SVM training formulation:

10

Let be a “linear discriminant”, or a “decision function”
for a 1-dimensional classification task. Predict positive class when

Put little “pegs” on the training data.
Positive examples get an “upward” peg.
Negative examples get a “downward” peg.

Doesn’t matter what height of pegs is.
Assume they have height = 1.

Constraint: linear discriminant must pass
above all upward pegs, and must pass
below all the downward pegs

Preview of geometric intuition
behind SVM training formulation:

11

Let be a “linear discriminant”, or a “decision function”
for a 1-dimensional classification task. Predict positive class when

Different combinations of can
satisfy these “above/below the pegs”
constraints.

Each choice has a different margin.

Each choice may perform differently on
test data than the other choices.

Preview of geometric intuition
behind SVM training formulation:

12

Let be a “linear discriminant”, or a “decision function”
for a 1-dimensional classification task. Predict positive class when

Key idea of SVMs: the choice of
having smallest slope is the unique
linear discriminant having at
the midpoint between the closest positive
and negative examples, and therefore has
the maximum margin.

SVMs prefer this choice among all others.

Linear discriminant is ,

Point can be written as
where is projection onto plane
and is length of .

Since we have

• How to express distance of a point to a hyperplane,
i.e. the magnitude of the margin?

Hyperplane geometry

or for short. Hyperplane is .

signed distance
to hyperplane!

• Given training set
where class labels .
• Can classify new point using

sign of signed distance:

Classification from hyperplane

“in front”

“behind”

means “not sure”

predicted
class label

As far as possible is , and we’re not even using

Maximizing “the margin” (1st attempt)

Given training set
where class labels .

Can we define the “margin” to be
the smallest signed distance to all
points, and try to maximize it?

15

NO! This is “make all points be in front
of the hyperplane as far as possible.”

Maximizing “the margin” (correct)

Given training set
where class labels .

Fix: Make cases be behind
the hyperplane as far as possible.

16

YES! Margin is negative if any point is
not in the halfspace assigned by .

Maximizing “the margin” (correct)

Given training set
where class labels .

Fix: Make cases be behind
the hyperplane as far as possible.

17

YES! Margin becomes positive when all
data is separated.

YES! Margin if any misclassified.

Maximizing “the margin” (correct)

Given training set
where class labels .

Fix: Make cases be behind
the hyperplane as far as possible.

18YES! Margin is bounded from above.

YES! Margin if any misclassified.

YES! Margin if data fully separated.

Support Vectors

Data point is a “support vector” if no other data
point has strictly smaller distance to the hyperplane

The support vectors are sufficient to determine the
hyperplane. Other points are irrelevant! 19

1 support vector (of 4)

Towards constrained programming

Goal: Learn classifier by solving this max-min problem:

Strategy: Formulate as constrained programming, so
that we can use powerful optimization algorithms.

Idea: Express the with a set of N constraints:

20
introduce new variable

to be margin
OK! But these constraints are non-linear in .
Can we make them linear somehow?

Why aim for linear constraints?
Because we can use faster optimization algorithms!
Hopefully quadratic program optimizers!

21

(faster “solvers”)

already handles linear
inequality constraints

https://cvxopt.org/userguide/coneprog.html#quadratic-programming

https://cvxopt.org/userguide/coneprog.html

Towards quadratic programming

First, move non-linear term out of the denominator

Observation: The scale of is arbitrary in this
formulation, since defines
the exact same decision boundary for any , and
likewise .

This means it’s OK to restrict our search space to only
. for which . Still max-margin!

22

Linear in !
(are constants)

Non-linear in .
But can we somehow
make this side linear?

Towards quadratic programming

Idea: Use this “degree of freedom” in to search
only solutions where takes some constant value.

23

1D example

Towards quadratic programming

Idea: Use this “degree of freedom” in to search
only solutions where takes some constant value.

24

1D example

Towards quadratic programming

Idea: Use this “degree of freedom” in to search
only solutions where takes some constant value.

25

1D example

(constant)

Towards quadratic programming

26

1D example

(not restricted
to be constant)

Choose arbitrarily. Now
we automatically consider only
for which for all i.

Idea: Use this “degree of freedom” in to search
only solutions where takes some constant value.

From among all that
define equivalent decision,
this is the unique one
that satisfies .

Linear both sides!

Towards quadratic programming

27

1D example

Idea: Use this “degree of freedom” in to search
only solutions where takes some constant value.

Choose arbitrarily. Now
we automatically consider only
for which for all i.

(not restricted
to be constant)

Linear both sides!

Notice: with constraint,
the maximum margin happens
when is “flattest” possible,
i.e. when smallest possible!

Towards quadratic programming
Can we understand what we
did using our toy 1D example?

28

(not tight)

(not tight)

objective:
push r as high
as is feasible!

Towards quadratic programming

29

Can we understand what we
did using our toy 1D example? (tight)

(not tight)

Towards quadratic programming

30

Can we understand what we
did using our toy 1D example? (not tight)

(not tight)

Towards quadratic programming

31

Can we understand what we
did using our toy 1D example? (not tight)

(not tight)

Towards quadratic programming

32

Can we understand what we
did using our toy 1D example? (tight)

(tight)

Towards quadratic programming

33

Can we understand what we
did using our toy 1D example? (tight)

(tight)

Rescaling
gives equivalent
solutions!

Towards quadratic programming

34

Can we understand what we
did using our toy 1D example? (tight)

(tight)

For every
there is now
a unique
corresponding.

(violated)

BUT if data not
separable, now
infeasible, since
can’t have !

Towards quadratic programming

35

Can we understand what we
did using our toy 1D example? (tight)

(tight)

we choose to
optimize only
over subspace
satisfying

Towards quadratic programming

36

Can we understand what we
did using our toy 1D example?

maximizing
equivalent to
minimizing ,
so equivalent to
minimizing

Linear SVM
formulation
for our 1D
toy problem!!

Towards quadratic programming

37

Can we understand what we
did using our toy 1D example?

Linear SVM
formulation
for our 1D
toy problem!!

optimizing over
this subspace
forces
at support vectors
by definition

Towards quadratic programming

38

Can we understand what we
did using our toy 1D example?

Linear SVM
formulation
for our 1D
toy problem!!

optimizing over
this subspace
forces
at support vectors
by definition,
even when margin
is not yet maximal

Towards quadratic programming

39

Can we understand what we
did using our toy 1D example? (tight)

(not tight)

Towards quadratic programming

40

Can we understand what we
did using our toy 1D example?

(tight)

(not tight)

Towards quadratic programming

41

Can we understand what we
did using our toy 1D example? (tight)

(tight)

Notice the training objective is convex!
Also true of in higher dimensions.
That means we can find a global optimum!

So what have we done?

42

(we added this constraint)

Linear SVM for
separable data

Linear SVM with Hard Margin

• This is called a hard margin linear SVM formulation.
• If data non-separable, then no can satisfy all

. simultaneously.
• Their intersection in -space is an empty set.

• In that case, a quadratic programming solver will
report the problem instance as being ‘infeasible’
• No useful will be computed.
• This is what we “gave up” by assuming

43

What about non-separable data?

44

?

separable non-separable

What about non-separable data?

• Option 1: increase the dimensionality via
some non-linear feature transformation

45

Cover’s theorem

Image source: Wikimedia Commons

What about non-separable data?
• Option 2: introduce an SVM formulation that merely

penalizes non-separation, rather than forbidding it.
• Doesn’t magically make data separable, but at least gives

us a useful solution when data is non-separable!

46= “ksi”

• Idea: allow margin constraints
to be violated, but introduce
variable to measure
how violated constraint is,
if at all.
• Each constraint becomes:

Linear Soft Margin SVM

• Now, for every possible there exists a setting of
slack variables that make the constraints feasible.
• There is also a ‘force’ of strength pushing each

slack variable to be small (encourages constraint i).
• As , tightens to data, reducing to hard-margin SVM

• Still a quadratic program with linear constraints!
47

Non-Linear Soft-Margin SVM

• Idea: apply non-linear transformation
to features like we did for linear models.

• Replace features! Easy! Are we done yet?

48

where we precompute all

before formulating the
actual SVM instance

• Suppose we want to use LOTS of features, and then
tune regularization term to prevent over-fitting,
rather than hard-limiting our features.
• Example: Polynomial basis with all cross-terms

The SVM formulations so far don’t
scale with number of features

49

• To specify our SVM training objective
we must explicitly build this entire
. matrix inside the computer!

Towards a scalable SVM formulation

Sketch of the plan:
1. Write an equivalent “dual” formulation of our

current SVM training problem (the “primal”).
2. Write our original hyperplane variables

in terms of the new “dual variables” .
3. Explain the and how by optimizing

over dual variables we avoid computing matrix.
4. Show that we can recover optimal from

the optimal values after optimization completes.

50

“kernel trick”

1. Write dual of hard-margin SVM

51

Primal formulation of hard-margin SVM training (rearranged).

Equivalent formulation of hard-margin SVM training.

We have introduced “Lagrange multipliers” ,
one for each constraint of form in the primal.

1. Write dual of hard-margin SVM

52

Why are these equivalent problems?

If the primal is feasible,
the dual cannot be at
a minimum unless
satisfy all constraints.

1. Write dual of hard-margin SVM

53

By “Slater’s condition,” can
swap min-max for max-min
and still be equivalent!

If data separable, primal is strictly feasible (“Slater’s condition”) ...

“for fixed maximize over ”

“for fixed minimize over ”

You do not need to understand “Slater’s condition” for this course, just take it on faith

2. Write in terms of dual vars
for hard-margin SVM
For a fixed setting of dual variables , can the optimal
setting be expressed in closed form?

Let

Then

Setting gradient to zero gives
54

Yes!

2. Write in terms of dual vars
for hard-margin SVM
For a fixed setting of dual variables , can the optimal
setting be expressed in closed form?

Take

Setting derivative to zero gives an additional constraint
on the dual problem:

55

Not expression for itself, but
dual variables must satisfy
this for to be feasible.

2. Simplifying the dual formulation
Use and separate the sums of

56

Defined in terms of only dual
variables and inner products!

where for finite-dimensional feature
spaces, or more generally for possibly
infinite-dimensional feature space .

2. Final dual formulation of hard-
margin SVM training

57

Still equivalent to primal! Still a quadratic program!
Most importantly, expressed in terms of a kernel, not features!

Dual formulation of hard-margin SVM training, final form:

kernel function

this is why we really
went to the trouble
of deriving ‘dual’

3. The “Kernel trick”
How does an SVM in terms of
rather than help us to ‘scale’ better?

Reason: We can now train our SVM one of two ways:

58

The “Gram matrix”

or

For primal formulation.
Good when , i.e. fewer
features than training points.

For dual formulation.
Good when ,
i.e. more features than
training points, including
. , which is the
case for the popular
“Gaussian kernel”!

3. The “Kernel trick”

Computing doesn’t require us
to explicitly compute or , can pre-simplify!

Example:
If then
whereas
is the feature transformation that corresponds to.

In other words: can just compute the pre-simplified
expression directly (the “trick”)
without ever creating vectors or .

59

“Polynomial kernel”
of degree 2 with coefficient 1

4. Making a prediction

Suppose we do find a setting that
solves the dual SVM formulation.
Then what? How to use to make an actual prediction?

60

Prediction is just a weighted sum
of kernel evaluations between
and training data! Each
influences in direction with
strength proportional to weight
and similarity measure .

(from earlier)

4. Making a prediction

Duality theory tells that constraint in the primal is
tight (support vector!) if and only if in the dual.

61

Therefore, more specifically:
Prediction is weighted sum of
kernel evaluations between
and the support vectors only!

dual vars

After training, support vectors need
to be remembered, but all other data
(with) can be discarded!

This SVM only needs to remember 4 data points after training.

Final detail: how do we solve for the intercept ?

Observation: any support vector satisfies

Therefore, the optimal dual variables determine
the optimal primal variables .

4. Making a prediction

62

(tight)

1D Linear Example

63

Primal (hard-margin) Dual

(here we chose to compute b with respect to support vector 1)

1D Linear Example (closer look)

64

Dual (all separate terms)

forbidden by
constraint

Primal objective value for is

Dual objective for is also (“strong duality”)

Linear kernel

• Reduces problem to a Linear SVM.
• Larger value when points by are ‘aligned’ when

treated as vectors

• Corresponds to

Popular kernel functions

65

(bigger when vectors large and aligned)

Polynomial kernel of degree with coefficient

• Popular kernel. Typically use (up to quadratic).
• Coefficient scales the low-order terms relative to

the highest-order terms.
• For , corresponds to features:

Popular kernel functions

66

Polynomial kernel of degree , coefficient

Popular kernel functions

67

Recall this example.
It was a quadratic kernel!

Gaussian kernel with spread coefficient

• Default for sci-kit learn!
• Coefficient controls how far away a training point

can influence the prediction for a new point .
• For , corresponds to feature transformation

to infinite-dimensional space , where the
output feature in dimension involves
polynomial kernel of degree .

Popular kernel functions

68You do not need to understand how the infinite-dimensional thing works.

Unlike the Gaussian kernel for “kernel densities,” we don’t normalize
this version because SVMs do not use the kernel as a density.

Also known as
Radial Basis Function
(RBF) kernel

Gaussian kernel

69

Data non-separable in two dimensions, but separable
in the infinite-dimensional space of Gaussian kernel!

O = support vectors

Image credit: Christopher M. Bishop

70

2D exampleFor hard-margin, linear
discriminant always
takes value {-1, +1}
at each support vector

1D example, hard-margin (C = infinity) 1D example, soft-margin (C = 1.0)

Training points
“vote up” or
“vote down”

Gamma vs C for regularization

71https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

over-fit

under-fit

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

72

from Bishop, 6.2

More on kernels to come

73

• We’ll revisit kernels again when studying
Gaussian Processes

From https://www.cs.toronto.edu/~duvenaud/cookbook/

https://www.cs.toronto.edu/~duvenaud/cookbook/

SVM Summary
• Advantages:
• Good generalization principle, theoretical justification
• Can be formulated as convex quadratic program
• Can use domain expertise to design good kernels
• Kernel framework very flexible (vectors, sets, strings)
• Scales to large (or even infinite) feature spaces
• Predicts from sparse subset of data (non-parametric)

• Disadvantages:
• Can be slow to train, sensitive to params, hard to predict
• Sensitive to feature normalization

• And of course, like any model, can over/under-fit.
74

Much more to SVMs!

• We explicitly covered:
• linear hard-margin SVM primal for binary classification
• linear soft-margin SVM primal for binary classification
• non-linear hard-margin SVM primal for binary classification
• non-linear hard-margin SVM dual for binary classification

• We did not cover:
• soft-margin SVM dual for binary classification (doable!)
• Hinge-loss formulation of SVM
• SVM for multi-class classification (k-way etc)
• SVM for regression
• Vapnik-Chervonenkis theory (VC theory)

• VC dimension
• Generalization bounds 75

PRML Readings

§4.1.0 Discriminant functions
§4.1.1 Two classes
§6.0.0 Kernel Methods
§6.2.0 Constructing Kernels

- (only up to and including equation 6.23)

§7.0.0 Sparse Kernel Machines
§7.1.0 Maximum Margin Classifiers
§7.1.1 Overlapping class distributions

- (only up to and including equation 7.21, i.e., primal formulation only)

76

