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Support Vector Machines

• Early ideas developed in 1960s and 1970s by Vladimir 
Vapnik and Alexey Chervonenkis in USSR
• Major developments in 1990s by Vapnik and many 

others (Corinna Cortes, Bernhard Schölkopf, ...)
• Originally developed for binary classification tasks
• Elegant theory
• Clear notion of model ‘capacity’
• Generalization bounds

• Works very well in practice
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Image credit: Yann LeCun Vapnik



Using Support Vector Machines
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Lots of terminology and concepts specific to SVMs. 
To use SVMs effectively should know what they mean!
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Using Support Vector Machines
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Reading documentation isn’t enough to
understand what these things mean, or 
why SVMs are expressed this way!

?

?

?
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Using Support Vector Machines
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???

?

?

None of this makes sense without
building it up piece-by-piece...

...so that is what we will do!

?

?



Linear Discriminant Functions

• Is any choice of      better than      
the rest? In what sense?
• Unregularized logistic regression   

does not care; all equally good
• Regularized logistic regression     

cares, but does biasing each       
toward zero give a hyperplane that 
satisfies useful definition of “best”?
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• If data is linearly separable, can choose from among 
many possible separating hyperplanes



• Suppose we choose a hyperplane that passes 
close to the training data

Choosing a hyperplane
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mistake!

• BUT training data is just a small 
subsample of all possible data.
• New class samples likely to be 

‘near’ training data of that class
• We’re setting ourselves up to 

make mistakes on test data!

Notice that this concern hinges on an assumption that the data distribution
is somehow “smooth,” where the presence of a sample of class C indicates
a higher probability of observing class C “nearby” in feature space.



• Idea: seek the separating hyperplane that has 
maximum margin from the training samples

Maximum margin principle
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more likely to generalize less likely to generalize

margin
= distance of nearest point(s) to hyperplane



Preview of geometric intuition 
behind SVM training formulation:
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Let                                        be a “linear discriminant”, or a “decision function” 
for a 1-dimensional classification task. Predict positive class when 

Put little “pegs” on the training data.
Positive examples get an “upward” peg.
Negative examples get a “downward” peg.

Doesn’t matter what height of pegs is. 
Assume they have height = 1.

Constraint: linear discriminant must pass 
above all upward pegs, and must pass 
below all the downward pegs



Preview of geometric intuition 
behind SVM training formulation:

11

Let                                        be a “linear discriminant”, or a “decision function” 
for a 1-dimensional classification task. Predict positive class when 

Different combinations of             can 
satisfy these “above/below the pegs” 
constraints.

Each choice has a different margin.

Each choice may perform differently on 
test data than the other choices.



Preview of geometric intuition 
behind SVM training formulation:
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Let                                        be a “linear discriminant”, or a “decision function” 
for a 1-dimensional classification task. Predict positive class when 

Key idea of SVMs: the choice of             
having smallest slope is the unique 
linear discriminant having                      at 
the midpoint between the closest positive 
and negative examples, and therefore has 
the maximum margin.

SVMs prefer this choice among all others.



Linear discriminant is                                          ,

Point      can be written as 
where        is projection onto plane   
and                               is length of     .

Since                      we have

• How to express distance of a point to a hyperplane,   
i.e. the magnitude of the margin?

Hyperplane geometry

or           for short. Hyperplane is                  .

signed distance
to hyperplane!



• Given training set                                                   
where class labels                      .
• Can classify new point     using                                 

sign of signed distance:

Classification from hyperplane

“in front”

“behind”

means “not sure”

predicted
class label



As far as possible is         , and we’re not even using 

Maximizing “the margin” (1st attempt)

Given training set                           
where class labels                      .

Can we define the “margin” to be 
the smallest signed distance to all 
points, and try to maximize it?
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NO! This is “make all points be in front
of the hyperplane as far as possible.”



Maximizing “the margin” (correct)

Given training set                           
where class labels                      .

Fix: Make               cases be behind
the hyperplane as far as possible.
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YES! Margin is negative if any point is
not in the halfspace assigned by     .



Maximizing “the margin” (correct)

Given training set                           
where class labels                      .

Fix: Make               cases be behind
the hyperplane as far as possible.
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YES! Margin becomes positive when all 
data is separated.

YES! Margin        if any misclassified.



Maximizing “the margin” (correct)

Given training set                           
where class labels                      .

Fix: Make               cases be behind
the hyperplane as far as possible.

18YES! Margin is bounded from above.

YES! Margin        if any misclassified.

YES! Margin        if data fully separated.



Support Vectors

Data point       is a “support vector” if no other data 
point has strictly smaller distance to the hyperplane

The support vectors are sufficient to determine the 
hyperplane. Other points are irrelevant! 19

1 support vector (of 4)



Towards constrained programming

Goal: Learn classifier by solving this max-min problem:

Strategy: Formulate as constrained programming, so 
that we can use powerful optimization algorithms.

Idea: Express the          with a set of N constraints: 

20
introduce new variable

to be margin
OK! But these constraints are non-linear in     .
Can we make them linear somehow?



Why aim for linear constraints?
Because we can use faster optimization algorithms!
Hopefully quadratic program optimizers!
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(faster “solvers”)

already handles linear
inequality constraints

https://cvxopt.org/userguide/coneprog.html#quadratic-programming

https://cvxopt.org/userguide/coneprog.html


Towards quadratic programming

First, move non-linear         term out of the denominator

Observation: The scale of         is arbitrary in this 
formulation, since                                                   defines 
the exact same decision boundary for any           , and   
likewise                            .

This means it’s OK to restrict our search space to only      
. for which                                   . Still max-margin!
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Linear in          ! 
(           are constants)

Non-linear in         .
But can we somehow
make this side linear?



Towards quadratic programming

Idea: Use this “degree of freedom” in         to search 
only solutions where             takes some constant value.

23

1D example



Towards quadratic programming

Idea: Use this “degree of freedom” in         to search 
only solutions where             takes some constant value.

24

1D example



Towards quadratic programming

Idea: Use this “degree of freedom” in         to search 
only solutions where             takes some constant value.
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1D example



(constant)

Towards quadratic programming
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1D example

(not restricted
to be constant)

Choose                       arbitrarily. Now
we automatically consider only          
for which                                   for all i.

Idea: Use this “degree of freedom” in         to search 
only solutions where             takes some constant value.

From among all          that
define equivalent decision,
this is the unique one
that satisfies                  .

Linear both sides!



Towards quadratic programming
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1D example

Idea: Use this “degree of freedom” in         to search 
only solutions where             takes some constant value.

Choose                       arbitrarily. Now
we automatically consider only          
for which                                   for all i.

(not restricted
to be constant)

Linear both sides!

Notice: with                      constraint,
the maximum margin     happens
when            is “flattest” possible,
i.e. when        smallest possible!



Towards quadratic programming
Can we understand what we 
did using our toy 1D example?

28

(not tight)

(not tight)

objective:
push r as high
as is feasible!



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example? (tight)

(not tight)



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example? (not tight)

(not tight)



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example? (not tight)

(not tight)



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example? (tight)

(tight)



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example? (tight)

(tight)

Rescaling
gives equivalent
solutions!



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example? (tight)

(tight)

For every       
there is now
a unique
corresponding.

(violated)

BUT if data not
separable, now
infeasible, since
can’t have             ! 



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example? (tight)

(tight)

we choose to 
optimize only
over subspace
satisfying 



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example?

maximizing     
equivalent to
minimizing       ,
so equivalent to
minimizing 

Linear SVM
formulation
for our 1D
toy problem!!



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example?

Linear SVM
formulation
for our 1D
toy problem!!

optimizing over
this subspace
forces   
at support vectors
by definition



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example?

Linear SVM
formulation
for our 1D
toy problem!!

optimizing over
this subspace
forces   
at support vectors
by definition,
even when margin
is not yet maximal



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example? (tight)

(not tight)



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example?

(tight)

(not tight)



Towards quadratic programming
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Can we understand what we 
did using our toy 1D example? (tight)

(tight)

Notice the training objective            is convex!
Also true of                 in higher dimensions. 
That means we can find a global optimum!



So what have we done?
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(we added this constraint)

Linear SVM for
separable data



Linear SVM with Hard Margin

• This is called a hard margin linear SVM formulation. 
• If data non-separable, then no     can satisfy all                  

. simultaneously.
• Their intersection in           -space is an empty set.

• In that case, a quadratic programming solver will 
report the problem instance as being ‘infeasible’
• No useful           will be computed.
• This is what we “gave up” by assuming                    

43



What about non-separable data?

44

?

separable non-separable



What about non-separable data?

• Option 1: increase the dimensionality via 
some non-linear feature transformation

45

Cover’s theorem

Image source: Wikimedia Commons



What about non-separable data?
• Option 2: introduce an SVM formulation that merely 

penalizes non-separation, rather than forbidding it.
• Doesn’t magically make data separable, but at least gives 

us a useful solution         when data is non-separable!

46= “ksi”

• Idea: allow margin constraints 
to be violated, but introduce 
variable              to measure 
how violated constraint    is,      
if at all.
• Each constraint becomes:



Linear Soft Margin SVM

• Now, for every possible          there exists a setting of 
slack variables that make the constraints feasible.
• There is also a ‘force’ of strength             pushing each 

slack variable      to be small (encourages constraint i).
• As                 , tightens to data, reducing to hard-margin SVM

• Still a quadratic program with linear constraints!
47



Non-Linear Soft-Margin SVM

• Idea: apply non-linear transformation        
to features like we did for linear models.

• Replace features! Easy! Are we done yet?

48

where we precompute all

before formulating the
actual SVM instance



• Suppose we want to use LOTS of features, and then 
tune regularization term       to prevent over-fitting, 
rather than hard-limiting our features.
• Example: Polynomial basis with all cross-terms 

The SVM formulations so far don’t 
scale with number of features

49

• To specify our SVM training objective 
we must explicitly build this entire        
. matrix inside the computer!



Towards a scalable SVM formulation

Sketch of the plan:
1. Write an equivalent “dual” formulation of our 

current SVM training problem (the “primal”).
2. Write our original hyperplane variables                    

in terms of the new “dual variables”   .
3. Explain the                       and how by optimizing 

over dual variables we avoid computing      matrix.
4. Show that we can recover optimal          from       

the optimal    values after optimization completes.

50

“kernel trick”



1. Write dual of hard-margin SVM

51

Primal formulation of hard-margin SVM training (rearranged).

Equivalent formulation of hard-margin SVM training.

We have introduced “Lagrange multipliers”                                    ,
one for each constraint of form                        in the primal.



1. Write dual of hard-margin SVM

52

Why are these equivalent problems?

If the primal is feasible,
the dual cannot be at
a minimum unless        
satisfy all     constraints.



1. Write dual of hard-margin SVM
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By “Slater’s condition,” can 
swap min-max for max-min 
and still be equivalent!

If data separable, primal is strictly feasible (“Slater’s condition”) ...

“for fixed          maximize over    ”

“for fixed     minimize over         ”

You do not need to understand “Slater’s condition” for this course, just take it on faith



2. Write      in terms of dual vars     
for hard-margin SVM
For a fixed setting of dual variables    , can the optimal 
setting       be expressed in closed form?

Let

Then

Setting gradient to zero gives 
54

Yes!



2. Write     in terms of dual vars    
for hard-margin SVM
For a fixed setting of dual variables    , can the optimal 
setting      be expressed in closed form?

Take

Setting derivative to zero gives an additional constraint 
on the dual problem:

55

Not expression for      itself, but
dual variables must satisfy
this for      to be feasible.



2. Simplifying the dual formulation
Use                                  and separate the sums of

56

Defined in terms of only dual
variables and inner products!



where                                          for finite-dimensional feature 
spaces, or more generally                                            for possibly 
infinite-dimensional feature space        . 

2. Final dual formulation of hard-
margin SVM training
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Still equivalent to primal! Still a quadratic program!
Most importantly, expressed in terms of a kernel, not features!

Dual formulation of hard-margin SVM training, final form:

kernel function

this is why we really 
went to the trouble 
of deriving ‘dual’



3. The “Kernel trick” 
How does an SVM in terms of                                              
rather than           help us to ‘scale’ better?

Reason: We can now train our SVM one of two ways:
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The “Gram matrix”

or

For primal formulation.
Good when                  , i.e. fewer
features than training points.

For dual formulation.
Good when                  , 
i.e. more features than 
training points, including                    
. , which is the 
case for the popular 
“Gaussian kernel”!



3. The “Kernel trick”

Computing                                           doesn’t require us 
to explicitly compute          or          , can pre-simplify!

Example:
If                             then
whereas                                                                                
is the feature transformation that     corresponds to.

In other words: can just compute the pre-simplified 
expression                                    directly (the “trick”) 
without ever creating vectors         or          .

59

“Polynomial kernel”
of degree 2 with coefficient 1



4. Making a prediction

Suppose we do find a setting                                         that 
solves the dual SVM formulation. 
Then what? How to use     to make an actual prediction?

60

Prediction is just a weighted sum 
of kernel evaluations between      
and training data! Each       
influences     in direction      with 
strength proportional to weight     
and similarity measure                  .   

(from earlier)



4. Making a prediction

Duality theory tells that constraint     in the primal is 
tight (support vector!) if and only if                in the dual.
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Therefore, more specifically:
Prediction is weighted sum of 
kernel evaluations between      
and the support vectors only!

dual vars

After training, support vectors need 
to be remembered, but all other data 
(with             ) can be discarded!

This SVM only needs to remember 4 data points after training.



Final detail: how do we solve for the intercept      ?

Observation: any support vector       satisfies

Therefore, the optimal dual variables       determine   
the optimal primal variables             .

4. Making a prediction

62

(tight)



1D Linear Example
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Primal (hard-margin) Dual

(here we chose to compute b with respect to support vector 1)



1D Linear Example (closer look)
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Dual (all separate terms)

forbidden by
constraint

Primal objective value for                  is

Dual objective for       is also        (“strong duality”)



Linear kernel

• Reduces problem to a Linear SVM.
• Larger value when points by are ‘aligned’ when 

treated as vectors

• Corresponds to

Popular kernel functions

65

(bigger when vectors large and aligned)



Polynomial kernel of degree     with coefficient 

• Popular kernel. Typically use             (up to quadratic).
• Coefficient     scales the low-order terms relative to 

the highest-order terms. 
• For               ,             corresponds to features:

Popular kernel functions

66



Polynomial kernel of degree             , coefficient 

Popular kernel functions

67

Recall this example.
It was a quadratic kernel!



Gaussian kernel with spread coefficient 

• Default for sci-kit learn!
• Coefficient     controls how far away a training point 

can influence the prediction for a new point     .
• For              , corresponds to feature transformation 

to infinite-dimensional space                   , where the 
output feature in dimension     involves           
polynomial kernel of degree    .

Popular kernel functions

68You do not need to understand how the infinite-dimensional thing works.

Unlike the Gaussian kernel for “kernel densities,” we don’t normalize 
this version because SVMs do not use the kernel as a density.

Also known as
Radial Basis Function 
(RBF) kernel



Gaussian kernel
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Data non-separable in two dimensions, but separable 
in the infinite-dimensional space of Gaussian kernel!

O = support vectors

Image credit: Christopher M. Bishop
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2D exampleFor hard-margin, linear
discriminant always
takes value {-1, +1}
at each support vector

1D example, hard-margin (C = infinity) 1D example, soft-margin (C = 1.0)

Training points
“vote up” or
“vote down”



Gamma vs C for regularization

71https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

over-fit

under-fit

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
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from Bishop, 6.2



More on kernels to come
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• We’ll revisit kernels again when studying 
Gaussian Processes

From https://www.cs.toronto.edu/~duvenaud/cookbook/

https://www.cs.toronto.edu/~duvenaud/cookbook/


SVM Summary
• Advantages:
• Good generalization principle, theoretical justification
• Can be formulated as convex quadratic program
• Can use domain expertise to design good kernels
• Kernel framework very flexible (vectors, sets, strings)
• Scales to large (or even infinite) feature spaces
• Predicts from sparse subset of data (non-parametric)

• Disadvantages:
• Can be slow to train, sensitive to params, hard to predict
• Sensitive to feature normalization

• And of course, like any model, can over/under-fit.
74



Much more to SVMs!

• We explicitly covered:
• linear hard-margin SVM primal for binary classification
• linear soft-margin SVM primal for binary classification
• non-linear hard-margin SVM primal for binary classification
• non-linear hard-margin SVM dual for binary classification

• We did not cover:
• soft-margin SVM dual for binary classification (doable!)
• Hinge-loss formulation of SVM
• SVM for multi-class classification (k-way etc)
• SVM for regression
• Vapnik-Chervonenkis theory (VC theory)

• VC dimension
• Generalization bounds 75



PRML Readings

§4.1.0 Discriminant functions
§4.1.1 Two classes
§6.0.0 Kernel Methods
§6.2.0 Constructing Kernels

- (only up to and including equation 6.23)

§7.0.0 Sparse Kernel Machines
§7.1.0 Maximum Margin Classifiers
§7.1.1 Overlapping class distributions

- (only up to and including equation 7.21, i.e., primal formulation only)
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